In silico tools for exploring potential human allergy to proteins

Maria Hayes¹, *, Pierre Rouge², Annick Barre²,³, Corinne Herouet-Guicheney⁴, Erwin L. Roggen⁵

¹Teagasc, The Irish Agricultural and Food Development Authority, Food BioSciences Department, Ashtown, Dublin 15, Dublin, Ireland
²Université de Toulouse, UPS, IRD, UMR 152 PharmaDev, Université Toulouse 3, Faculté des Sciences Pharmaceutiques, 31062 Toulouse cedex 9, France
³Paul Sabatier University – Toulouse II, Toulouse, France
⁴Bayer SAS, Human and Animal Safety Assessment – Seeds, 355 rue Dostoievski, 06903 Sophia Antipolis, France
⁵Rs Management and Consulting ApS, Denmark

Bioinformatics can help scientists to develop hypotheses about proteins that may need to be tested further for risks of causing allergy. In silico methodologies and tools like databases and comparison software, play an important role in the assessment of protein allergenicity and allergenicity mechanisms. They can identify whether a novel protein is an existing allergen and/or has the potential to cross-react with an existing allergen. They cannot identify whether a novel protein will ‘become’ an allergen. AllergenOnline is the tool currently used for the safety assessment of novel proteins, but other tools are also available including the Structural Database of Allergenic Proteins (SDAP) and AllerTOP. Information concerning PeptideRanker, as well as the Hydrophobic Cluster Analysis (HCA) method used for identifying IgE-binding epitopes in food allergens is discussed.

Introduction

Allergenicity is the potential of any material to cause sensitization and allergic reaction and is frequently associated with the IgE antibody [1]. An existing allergy/allergen is a real and immediate risk [2,3]. Allergens represent a small fraction of the proteins that humans are routinely exposed to. The reason why these proteins can cause T- and B-cell responses remains largely unanswered. Furthermore, a sensitized individual may respond to proteins that share certain structural features with the protein that elicited the initial immune reaction – a phenomenon known as cross-reactivity.

In silico methodologies can identify whether a novel protein is an existing allergen or whether the novel protein has potential to cross-react with an existing allergen. However, they cannot identify whether a novel protein will ‘become’ an allergen [2]. Data produced from the use of in silico methodologies may be used to make a decision about whether additional in vitro and in vivo testing is required, by serum screening, as recommended by Codex Alimentarius Commission (2009).

*Corresponding author: M. Hayes (mara.hayes@teagasc.ie)

Please cite this article in press as: Hayes M, et al. In silico tools for exploring potential human allergy to proteins, Drug Discov Today: Dis Model (2016), http://dx.doi.org/10.1016/j.ddmod.2016.06.001
and Goodman, 2008 [2,4]. In practice, several in silico methodologies for determination of protein allergenicity compare amino acid sequences from a novel, trait protein to known food, contact, and respiratory allergenic proteins found in allergen databases [3].

State of the art – methods and tools currently used for allergenicity assessment
According to the most recent guidelines on the allergenicity evaluation of proteins, a novel protein should have a minimum of 35% sequence identity over a window of 80 amino acids when compared with known allergens to be considered a potential allergen [4,5]. This is a very conservative approach when we take into account the high degree of sequence identity that is needed for actual cross-reactivity which is often in excess of 50–60% sequence similarity, over significant spans of the target protein [6].

AllergenOnline (www.allergenonline.org) focuses on sequence identity matches. It provides a detailed description of accepted bioinformatics comparisons on the website. Previously, Siruguri et al. and Moran et al. have used AllergenOnline for regulatory comparisons [7,11,12]. AllergenOnline provides access to a peer reviewed allergen list and a sequence searchable database (FASTA) [7]. It is used for the identification of proteins that may present a potential risk of allergenic cross-reactivity. AllergenOnline is used currently by industry for the risk assessment of genetically modified food including proteins. The robust allergen database is updated annually by a panel of independent scientists and clinicians.

Real health risks come from inclusion of proteins in a new food, that are allergens from another source or highly likely to be cross-reactive. A much lower risk is presented by the likelihood that a protein will become an allergen de novo, or sensitize de novo and lead to allergic sensitization [15]. This may be indicated by stability in pepsin, abundance and thermal stability, but these factors could be important in elicitation not sensitization. (Where does sensitization occur? Gut, skin, mouth, airway). In using sequence comparisons, if the protein is found to have been described previously as an allergen (100% or nearly 100% identity), that is a significant risk (weight). If a protein has high sequence identity (50–70+%), it suggests the risk of probable cross-reactivity and would require serum IgE tests with properly targeted allergic human sera. If >35% identity over 80 or more amino acids between a novel and existing protein is found, that is considered a potential allergy risk by Codex [4] and should be evaluated further by serum IgE testing if a proper set of serum donors can be identified (which can be challenging for rarely reported allergenic sources).

In the past, several researchers also used step-wise contiguous identical amino acid segment searches (i.e. 6- and later 8-mer searches), as described in the FAO/WHO guidelines [5,8] to predict human allergenicity to proteins, based on the idea that these segments represented both a theoretical B-cell epitope as well as a minimum size for a conserved T-cell epitope. For instance, Stadler and Stadler [14] reported that a 6-mer match resulted in more than two-thirds of all proteins in SwissProt being predicted to be allergens, and >40% of the human genome being predicted as such. This was confirmed in other studies and as such, this approach was not seen as a reliable criterion for predicting allergenic potential [10–12]. In the past, immunologists have tried to correlate ‘known’ and ‘predicted’ B cell and T cell epitopes with allergens, compared to non-allergens or weak-allergens, and failed to be able to develop solid predictions or clusters for allergy. Unfortunately, the ideas outlined by Ladics [4], have not come to fruition.

Overall, this comparison methodology of 35% identity over at least 80 amino acids is considered to be useful for the prediction of potential cross-reactivity with known allergens, but also produces a number of false positive results. The predictive value of sequence similarity searches for allergenicity potential should be carefully deliberated using a weight of evidence approach as no single method can be fully predictive [18]. Moreover, a relatively high degree of identity at the amino acid sequence level, as commonly seen between IgE cross-reactive proteins, cannot guarantee that the protein is a cross-reactive allergen [9,13]. In other words, no perfect correlation exists between these in silico results and food allergenicity.

Protein families containing known allergens
The databases used in assessment of potential protein allergenicity or cross reactivity should be composed of protein sequences based on key criteria like the recognition of allergens by IgE (food allergenicity marker), which involves binding to linear or conformational epitopes on allergen surfaces, and should be proven by clinical data in humans. These protein sequence databases should be updated regularly as new allergens are discovered every year.

Ideally, the molecular basis of protein allergenicity should also be studied through analysis of its sequence, structure and B- or T-cell epitopes where they relate to allergenicity [4] but these data are often missing for most of the known allergen databases. Furthermore, B and T-cell epitope search tools may not be able to distinguish between immunogenicity and allergenicity.

Important allergenic protein families include the non-specific lipid transfer proteins (nsLTPs), the 2S albumins, and the cupin superfamily containing the 11S and 7S globulins [19]. The nsLTP proteins account for severe allergic reactions and are found in fruits from the Rosaceae family (peaches and apples), pollen, tree nuts, vegetables and peanuts [20]. Pepsin stability of proteins may be due to secondary and tertiary structural features. For instance, the presence of disulfide bridges is known to stabilize the protein structure. This is
the case for the 2S albumin family, which has a 3D structure containing four disulphide bridges. Furthermore, the abundance should be taken into account as most of the plant allergens are seed storage proteins, like the 7/8S and 11S globulins that are major components in seeds from dicotylo-
donous species [20]; However no clear criteria exists to define how much is too much. There is little sequence similarity between cupins and globulins although they share a similar fold, thus assessment of cross-reactivity is sometimes limited [20]. Caseins, parvalbumins and tropomyosins are found in dairy products, fish and crustaceans, molluscs and meat respectively [20]. There are many proteins in these families that have never been associated with allergy and this could be due to: (1) the broadness of the family designations, (2) there has been little or no exposure to these proteins and (3) the overall structure and sequence similarities are not sufficiently definitive in a biological sense [17].

New methodologies, new perspectives

Figure 1 illustrates these and links them to potential human allergenicity and immunogenicity to protein prediction steps. Assigning proteins as allergens may involve assessment of their amino acid and dipeptide composition using support vector machines (SVMs) [21,22]. Other methods could include motif-based techniques using the software MEME/ MAST and comparison algorithms with ‘Allergen Representa-
tive Proteins’ (ARP) [23]. In silico methods for identification of B-cell epitopes could include hydrophilicity scans, amino acid property assessment and combinations of both methods. Computational prediction methods for prediction of peptide binding to human leucocyte antigen (HLA), which is a prerequisite for T-cell recognition, are based on binding motifs, quantitative matrices or artificial intelligence methods and can reduce the number of experiments required to identify relevant T-cell epitopes [24,25]. However, to date, there has not been any demonstration that these new models outperform a FASTA sequence comparison with a well-developed allergen database using criteria of >35–40% identity over 80 amino acids. For the most part, the value of predictions made using these databases depends upon the dataset.

Hydrophobic Cluster Analysis (HCA) as a relevant tool for predicting the IgE-binding epitope regions in food allergens

The amino acid residues forming the IgE-binding epitopes exposed on the surface of allergenic proteins usually share a set of physico-chemical characteristics that can be used for predicting the potential immunogenicity and allergenicity of food proteins. These characteristics mainly consist of (1) the hydrophilicity, due to the occurrence of polar residues (Asn/N, Gln/Q, His/H, Ser/S, Thr/T, Tyr/Y residues), (2) the electronegative (Asp/D and Glu/E residues) and/or electropositive characteristics (Arg/R and Lys/K residues) of residues and (3) the flexibility of residues (Gly/G, Ser/S, Thr/T residues) [26].

Owing to the combination of the physico-chemical character-
istics of their building residues, most of these epitopes coincide with loops, which often protrude from the surface of the allergic proteins. However, other secondary structural features like strands of β-sheet or α-helix, can be readily exposed on the surface and thus, participate in the IgE-binding of food allergens.

Recently, researchers used hydropathic profiles based on different scales of hydrophilicity/hydrophobicity, flexibility and solvent exposure to predict the linear IgE-binding epi-
topes of allergic proteins, either coupled with an epitope-
mapping approach or structural analysis. However, hydro-
pathic profiles suffer from inherent limitations with respect to structural information which render them unsuitable for the structural characterization of the predicted epitopes on the surface of the allergens. In this respect, HCA offers an efficient tool [26], allowing association of the predicted epi-
topes to structural features. The prediction of IgE-binding epitopes with HCA was successfully applied to Pru p 3 and Mal d 3, the nLTPs from peach and apple fruits [26].

HCA was also recently applied to Sal s 1, the salmon (Salmo salar) parvalbumin allergen, Jug r 1, the English walnut (Juglans regia) 2S albumin allergen, Pru p 3, the peach (Pru-

nus persica) lipid transfer protein and Pis v 1, the pistachio (Pis-
tacia vera) 2S albumin allergen. YASARA [27] was used to build the three-dimensional models of the proteins. The three-
dimensional structure of Pru p 3 (PDB code 2ALG) was used. The IgE-binding epitopes identified on Sal s 1, Jug r 1, Pru p 3, and Pis s 1 were mapped on the molecular surface of the corresponding allergens. Molecular surface cartoons were drawn with Chimera. The HCA profiles of Sal s 1, Jug r 1, Pru p 3, and Pis v 1, were drawn from the drawhca server (http://bioserv.rpbs.univ-paris-diderot.fr/services/HCA/).

Segments of the HCA profiles were predicted as putative continuous IgE-binding epitopes when they fulfilled at least three out of the four following criteria: (1) exposure to the solvent, (2) flexibility (Gly, Ser, Thr, His residues), (3) prevalence of hydrophilic residues (Asn, Gln, His, Ser, Thr, Tyr), and (4) occurrence of electropositive (Arg, Lys) and/or elec-
tronegative (Ahp, Glu) residues. As shown in Fig. 2 most of the linear IgE-binding epitopes identified on Sal s 1, Jug r 1, Pru p 3 and Pis v 1 were correctly predicted on the HCA profiles of the corresponding allergens. Both the predicted and identi-
fied epitopic stretches overlapped significantly. However, some discrepancies were found, which related to (1) the extent of the IgE-binding epitopic stretch, which is often under-estimated, and (2) the prediction of extra-epitopes, which have no counterparts among the IgE-binding epitopes immuno-
chemically identified on the molecular surface of the allergens. This is the case for the HCA profiles of Sal s 1 and Pis v 1 allergens, which exhibit an additional epitopic stretch at the C-terminal end of the sequence. In spite of these discrepancies, the critical analysis of the HCA profiles provides a
rather accurate tool for the prediction of the IgE-binding epitopes of the food allergenic proteins, since the regions in which they occur have been rather correctly predicted.

Three-dimensional (3-D) structure of allergens

The allergenic potential of proteins may also be identified by using 3-D structure when conformational epitopes are engaged in the allergenic reaction. Linear epitopes can be identified with FASTA and BLAST. Sequence identity using FASTA/BLAST is useful for predicting potential cross-reactivity (depending on the cut-off) as a 3-D structural prediction. In fact, most structural predictions for proteins that have not been tested by crystallography have had to have high FASTA or BLAST alignments to ensure predictions that were accurate. For risk assessment, the suggested program and link is interesting http://scanmail.trustwave.com/?c=6600&d=mcja11fmskm7qkp02dr5p9z6utfrk8vKFWVMEU2w8s=61&u=http%3a%2f%2fwww-bionet%2esscc%2eru%2fpsd%2fcgi-bin%2fprograms%2fAllergen%2fallergen%2ecgi.

However, a general structural feature of allergens that causes allergenicity has not been described up to now. Allergenicity prediction methods require information about the 3-D structure of query protein; thereby considerably restricting analysis to only those proteins whose 3-D structure is known. As a consequence, many proteins with unknown structure could be overlooked. A new method for allergenicity prediction was developed using information on protein 3-D structure [28]. Three-dimensional structures of known allergen proteins were used for representing protein surface as patches designated as discontinuous peptides. Allergen was predicted by searching for these peptides in query protein sequences. It was demonstrated that the information on the discontinuous peptides may help to predict more accurately potential human allergenicity to protein. The method is available at http://www-bionet.ssc.ru/psd/cgi-bin/programs/Allergen/allergen.cgi [28].

Many freely accessible websites offer comparison tools associated with allergen databases (Table 1).

![Predictions of allergen epitopes](http://www-bionet.ssc.ru/psd/cgi-bin/programs/Allergen/allergen.cgi)
The PREAL method uses 1176 distinct allergenic proteins from the Swiss-Prot Allergen Index, IUIS Allergen Nomenclature, SDAP and the Allergen Database for Food Safety (ADFS) for building the positive allergen dataset. For building the negative dataset, previously reported methods by Bjorklund [32], stadler [14] and Barrio and colleagues [33] are integrated and sequence entries removed where identify similarities are greater than 30% to known allergens [29]. In addition, sequences less than 50 amino acids are removed. Using this methodology, the subcellular locations (particularly extracellular/cell surface and vacuole) and amino acid composition were identified as the major markers for allergenicity for specific wheat and soybean proteins previously [30].

AlgPred: prediction of allergic potential of proteins and IgE epitope mapping

AlgPred (http://www.imtech.res.in/raghava/algpred/) uses an allergen representative peptide (ARP) strategy to try to predict allergenic properties of allergens [23]. Allergens are predicted by (1) MEME/MAST motif searches; (2) SVM-based classification of allergens and non-allergens by single amino acid composition and by dipeptide composition; and (3) BLAST searches against allergen representative peptides. However, to date, PREAL and Algpred have not been demonstrated to outperform FAST or BLAST, depending on the criteria and dataset used.

AllerTOP1.0: prediction of allergic potential of proteins

AllerTOP (http://www.pharmfac.net/allertop) attempts to predict allergenic potential of proteins by applying auto cross-covariance (ACC) pre-processing to build a dataset of known allergens, developing alignment-independent models for allergen recognition based on the main physico-chemical properties of proteins [34]. It uses five machine learning methods for classification of proteins including discriminant analysis by partial least square (DA-PLS), logistic regression (LR), decision tree (DT), naive Bayes (NB) and k nearest neighbors (kNN). AllerTOP also try to identify the most probable route of exposure. In comparison to other models for allergen prediction, AllerTOP out-performs them with 94% sensitivity [35].

Allergen databases

On top of AllergenOnline, several databases exist for example BIOPEP. Although not fully curated and regularly updated, these databases can provide some insight on allergenicity potential of allergens. They include the Allergome (http://www.allergome.org/script/about.php), which has been designed to supply information on IgE-mediated allergens and associated clinical data. However, the use of Allergome is limited as it does not have a searchable function. BIOPEP (http://www.uwm.edu.pl/biochemia/index.php/en/biopep) is a database of biologically active peptide
Table 1. *In silico* prediction tools for prediction of potential allergenicity of proteins or for supporting explanatory work.

<table>
<thead>
<tr>
<th>Web tool</th>
<th>Web tool access address</th>
<th>Advantages of method</th>
<th>Reference</th>
</tr>
</thead>
</table>
| AllergenOnline | http://www.allergenonline.org/ | ● Methodology currently used for the allergenicity assessment of novel proteins
● Peer reviewed allergen list (by independent scientists and clinicians) and sequence searchable tool (FASTA, exact match searches, yearly, curated and updated.
● Intended for the identification of proteins that may present a potential risk of allergenic cross-reactivity
● Also celiac disease protein database risk assessment tool
● Hosted in the University of Nebraska, USA | [40] |
| AllerHunter | http://tiger.dbs.nus.edu.sg/AllerHunter | ● Cross reactive allergen prediction program that uses a combination of SVM and pairwise sequence similarity
● Hosted in the University of Singapore, Singapore | [30] |
● Uses AllFam, UIS and Allergome allergen databases and ProAP webtool
● Integrates protein biochemical and physicochemical properties (molecular weight, secondary structure propensity, hydrophobicity, polarizability, solvent accessibility, normalized van der Waals volume, polarity, and length)
● Integrates sequential features and subcellular locations
● mRMR and IFS used to identify allergenicity features
● Hosted in the Shanghai Jiao Tong University, China | [6] |
| AllerTOP 1.0 | http://www.pharmfac.net/allertop/ | ● Based on physicochemical protein properties
● Uses a protein sequence mining method (autocross covariance transformation of protein sequences into uniform equal-length vectors). The proteins are classified by k-nearest neighbor algorithm (KNN, k = 3) based on training set containing 2210 known allergens from different species and 2210 non-allergens from the same species.
● Hosted in the Sofia University, Bulgaria | [41,42] |
| SDAP | http://fermi.utmb.edu/SDAP/ | ● Investigation of the cross-reactivity between known allergens and in predicting the IgE-binding potential of food proteins
● 3-D searches
● Possibility to retrieve information related to an allergen from the most common protein sequence and structure databases (SwissProt, PIR, NCBI, PDB), to find sequence and structural neighbors for an allergen, and to search for the presence of an epitope other the whole collection of allergens
● Various computational tools that can assist structural biology studies related to allergens
● Hosted in the University of Texas, USA | |
| AlgPred | http://www.imtech.res.in/raghava/algpred/ | ● Allows prediction of allergens (and its position) based on similarity with known IgE epitopes
● Uses several tools (SVM, MEM/MAST, BLASTBLAST, 2890 allergen-representative peptides) and combined approaches
● Hosted in the Bioinformatics centre at CSIR-Institute of microbial technology, India | [23] |
| BIOPEP | http://www.uwm.edu.pl/biochemia | ● Contains data on allergic proteins including names, sequence, sequences of experimental/predicted epitopes
● Includes AllFam allergen family and epitopes
● Hosted in the University of Warmia and Mazury, Poland | [39] |
Table 1 (Continued)

<table>
<thead>
<tr>
<th>Web tool</th>
<th>Web tool access address</th>
<th>Advantages of method</th>
<th>Reference</th>
</tr>
</thead>
</table>
| FLAPs | uulfh@slv.se | • Structure prediction of proteins
• Filter-length adjusted allergen peptides (FLAPS) database | [44] |
| BcePred | http://www.imtech.res.in/raghava/bcepred/ | • Evaluates the performance of existing linear B-cell epitope prediction methods. 1029 B-cell epitopes
• Based on physico-chemical properties (hydrophilicity, flexibility/mobility, accessibility, polarity, exposed surface and/or turns) on a non-redundant dataset from Swiss-Prot
• Hosted in the Bioinformatics centre at CSIR-Institute of microbial technology, India | [31] |
| BepiPred 1.0| http://www.cbs.dtu/services/BepiPred/ | • Predicts the location of linear B-cell epitopes using both a hidden Markov model and a propensity scale method
• Hosted in the Technical University of Denmark, Denmark | [45] |
| ABCpred | http://omicstools.com/abcpred-s6519.html | • Predicts B-cell epitopes in an antigen sequence, using artificial neural network.
• It's able to predict epitopes with 65.93% accuracy using recurrent neural network
• Hosted in the Bioinformatics centre at CSIR-Institute of microbial technology, India | [23] |
• Limited update: last update in 2011 | [46] |
| Epitopia | http://epitopia.tau.ac.il/ | • Detection of immunogenic regions in protein structures or sequences (PDB and FASTA)
• Machine learning scheme (i.e. Naive Bayes classifier) to rank individual amino acids in the protein, according to their potential of eliciting a humoral immune response
• Identify B-cell epitopes (physico-chemical and structural-geometrical properties)
• Hosted in Tel Aviv University, Israel | [47] |

sequences associated with a program enabling the construction of profiles of the potential biological activity of protein fragments, calculation of quantitative descriptors as measures of the value of proteins as potential precursors of bioactive peptides, and prediction of bonds susceptible to hydrolysis by endopeptidases in a protein chain as well as allergenicity potential. It contains a small number of proteins (i.e. 135) but also allergenic epitopes [36]. Most of the epitopes used are registered in the Immune Epitope Database (IEDB) [37]. Secondary peptide structures are predicted using GOR V program [38]. BIOPEP is a database of peptides that contains recently identified allergenic peptides. Recently, sixty sequences of epitopes from the BIOPEP database attributed to tropomyosin from the shrimp Farfantepenaeus aztecus (Pen a 1.0102) were used as query sequences [39]. Vertebrate tropomyosins (e.g. from vertebrates used as food resources) contain fragments containing between 10 and 15 amino acid residues revealing 100% identity with epitopes from allergen Pen a 1.0102. Fragments identical to epitopes from Pen a 1.0102 are common in sequences of invertebrate tropomyosins, including those annotated in the Allergome database. Common epitopes are a probable molecular basis for cross-reactivity between food and non-food invertebrates. Some epitopes, especially rare penta-peptides containing the DEERM sequence, are present in sequences of proteins not sharing homology with tropomyosins. This fragment was found to be present in several proteins, from edible plants and animals as well as pathogenic microorganisms.

Conclusion

This paper reviews current *in silico* tools for assessing potential human allergenicity to proteins. These methods use a number of physico-chemical features (mainly amino acid searches) of proteins that can be predicted, but a strict, structural correlation between these features and allergenicity does not exist. Use of future innovative *in silico* methods for the prediction of allergenicity will be largely influenced by the choice of databases and algorithms that will be developed, standardized and most importantly empirically validated. Prediction of potential allergy is not proof of allergy. Further biochemical testing (IgE blotting) and biological tests including Basophil, skin prick tests, or *in vivo* challenge tests
with allergenic subjects are needed to validate allergy to protein predictions.

Conflict of interest
The authors declare that there are no conflicts of interest.

Acknowledgements
This work was supported by the EU COST Action ImpARAS FA1402. The opinions expressed herein and the conclusions of this publication are those of the authors.

References

